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ABSTRACT 

Using a 25-year hindcast experiment, we explore the possibility of seasonal-interannual prediction 
of the terrestrial ecosystem and the global carbon cycle. This has been achieved using a prototype 
forecasting system in which the dynamic vegetation and terrestrial carbon cycle model VEGAS was 
forced with 15-member ensemble climate predictions consisting of lead times up to 9 months from the 
NCEP/CFS climate forecast system. The results show that the predictability is dominated by the ENSO 
signal with its major influence on the tropical and subtropical regions, including South America, 
Indonesia, southern Africa, eastern Australia, western US and central Asia. There is also important non-
ENSO related predictability such as that associated with mid-latitude drought. Comparison of the 
dynamical prediction results with benchmark statistical prediction methods such as anomaly persistence 
and damping show that the dynamical method performs significantly better. The hindcasted ecosystem 
variables and carbon flux show significantly slower decrease in skill compared to the climate variables, 
partly due to the memories in land and vegetation processes that filter out the higher frequency noise 
and sustain the signal.  

1. Prospect for eco-carbon prediction 

Recently, forecasts of climate anomalies have been used to predict certain ecosystem characteristics such as 
crop yield and malaria epidemics, and the focus has been on end-user applications such as farmers operating at 
regional or smaller scales(e.g., Cane et al.,1994; Hansen and Indeje, 2004; Palmer et al., 2004). The 
methodology is typically statistical: observed correlation between climate anomalies and a certain application 
indicator, for example crop yield, is used to predict this indicator, provided that the information on climate 
anomalies can be predicted either statistically or dynamically. However, predicting ecosystem and carbon cycle 
at global scale, whether dynamical or statistical, has not been made quantitatively at interannual timescale.  

What does one expect from seasonal-interannual eco-carbon prediction? A main target is to predict spatial 
patterns and temporal variability of carbon fluxes and pool sizes (note that ecosystem productivity is a flux) a 
few months ahead of time. Specific examples include reduced productivity and enhanced fire and CO2 flux from 
Amazon to Indonesia when a drought is predicted, say in response to an upcoming El Nino event, and 
concurrent reduced CO2 outgasing and phytoplankton production in the eastern Equatorial Pacific Ocean. Such 
linkages have been documented by numerous observational and modeling studies (e.g., Jones et al., 2001; Zeng 
et al., 2005a; Turk et al., 2001). Another example is to predict atmospheric CO2 concentration and growth rate, 
say at Mauna Loa, or global total land-atmosphere carbon flux. While varying by only 2-3 ppmv on interannual 
timescales which has little impact on greenhouse effect, atmospheric CO2 is an integrated indicator of the global 
biosphere and carbon cycle (recall how the Keeling Curve of Mauna Loa CO2 concentration clearly depicts the 
seasonal cycle of the Northern Hemisphere biosphere; Keeling et al., 1995). Analogous to NINO3 as an index 
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for climate anomalies associated with ENSO, 
atmospheric CO2 can be used as a broad index for 
anomalies in the ecosystem function and the global 
carbon cycle. Therefore, we will use global total 
land-atmospheric CO2 flux as a key indicator in 
measuring the prediction skill, and also assess the 
spatial distribution in ecosystem productivity and 
carbon fluxes. 

Seasonal-interannual ecosystem and carbon 
cycle predictions have become possible due mainly 
to two strands of research and development in recent 
years: (1) significantly improved climate prediction 
systems, such as the NOAA/NCEP (National 
Oceanic and Atmospheric Administration/ National 
Centers for Environmental Prediction) coupled 
Climate Forecast System (CFS; Saha et al., 2006), 
and similar efforts such as the European DEMETER 
and EUROSIP project (Palmer et al.,2004), (2) 
development of global dynamic vegetation and 
terrestrial carbon cycle models on the land side and 

carbon-ecosystem models on the ocean side that, when forced offline by observed climate variables, are capable 
of simulating the major inter-annual variability in CO2 fluxes associated with phenomena such as ENSO and 
drought episodes (Zeng et al., 2005a,b).  

Here we report a prototype prediction system where the NCEP/CFS climate prediction is used to drive the 
vegetation/terrestrial carbon model VEGAS. The system is dynamical in two important aspects: (1) the CFS 
predicts the evolution of the physical climate system based on the internal dynamics of the coupled atmosphere-
land-ocean system; (2) the dynamic vegetation model represents vegetation growth and decay, competition, and 
the full terrestrial carbon cycle from photosynthesis to carbon allocation and decomposition.  

2. Design of the eco-carbon prediction system 

One should use various observations to test the skill of the hindcast as these events already took place. 
Unfortunately, unlike climate variables such as precipitation and temperature, there are only limited 
observations of the major ecosystem and carbon variables with sufficient spatiotemporal resolution. The 
approach here is to use the results from an 'offline' simulation in which the vegetation model was forced with 
observed (as opposed by predicted) climate. Such 
results for VEGAS had been previously compared 
with CO2 fluxes derived using atmospheric 
inversion of observed CO2 concentrations and 
satellite vegetation index (Zeng et al., 2005a; 
Rodenbeck et al., 2003). An example is shown in 
Fig.1 for the total land-atmosphere carbon flux. 
Such an offline simulation is what one would get if 
the climate prediction is ‘perfect’ (exactly like the 
observed climate), and will be referred to as ‘the 
validation’. Thus the skill assessed here will be the 
skill solely from climate prediction, not from the 
vegetation model. Nevertheless, this is 
fundamentally different from simply comparing the 
CFS predicted climate variables with their 
observed counterparts, because the eco-carbon 
model is a non-linear transformation of the 

  Figure 2  Schematic diagram of a prototype forecast  
system, showing its configuration of model and 
forcing. 

Figure 1  Global total land-atmosphere carbon flux 
simulated by the VEGAS forced by observed 
climate (black), compared to that derived from an 
inversion of a network of atmospheric CO2 
concentrations (blue; Rodenbeck et al., 2003) 
with a 12 month running mean to remove the 
seasonal cycle. 
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predicted climate information.  
The forecast procedure of our prototype system includes a few major steps described below, and illustrated 

in Fig. 2. It uses the hindcast setup with VEGAS and CFS as an example, but can be done similarly in 
operational forecast or for the ocean.  

1. A 25-year (1981-2005) hindcasted climate dataset from NCEP CFS (Saha et al., 2006) was preprocessed. 
To avoid any bias to which the carbon model may be sensitive, the monthly anomalies (deviations from 
the 25-year mean climatology) of precipitation/temperature were derived. These anomalies were then 
added to an observed climatology of Climatic Research Unit (CRU) dataset (Mitchell and Jones, 2005) to 
produce full-valued climate forcings.  

2. Spin-up the vegetation model to equilibrium using January1981 climate forcing, to avoid any ‘shock’ to 
the vegetation state at model startup.  

3. Run VEGAS for 9 month into future forced by CFS forecasts climate processed from Step 1. This is done 
15 times using 15 CFS ensemble members. The monthly forcing is interpolated to the vegetation model’s 
daily time-step. The 9 month and 15 member outputs of the ecosystem and carbon cycle variables are 
saved as the hindcast output predicted at this month.  

4. The vegetation state variables such as leaf carbon predicted at the end of the first month above are saved, 
and averaged over the 15 member ensemble to serve as the initial condition for the next month’s forecast.  

5. Repeat Steps 3 and 4, but for the next month, until the end of the hindcast period.  
Compared to typical state-of-the-art climate prediction in which sophisticated data assimilation is used for 

initialization, Step 4 is a simple way of initializing 
the prediction. Carbon data assimilation has only 
been attempted recently (Rayner et al., 2005), and is 
not yet ready for application to the prediction 
problem. Nevertheless, future research should 
explore ways to assimilate ecosystem variables such 
as vegetation structure for prediction purpose.  

For a significant fraction of the land surface, 
especially in mid-latitude regions, Human 
management such as agriculture, forestry and fire 
suppression have major impacts on carbon fluxes. 
To avoid complications, our proto type experiment 
here only considers natural variability and potential 
vegetation. Useful results are expected despite of 
this simplification because human management 
tends to alleviate adverse climate effects such as 
drought, but not to reverse them. Also, as a 
prototype, our forecast output is at a relatively 
coarse resolution of 2.5°×2.5°.  
3. Results from a 25-year hindcast experiment  

To aid in analyzing the results, we define a total 
land-atmospheric carbon flux as  
                Fta = Rh − NPP, (1)  
where NPP is the Net Primary Productivity, and Rh 
is the heterotrophic or soil respiration. Fta is 
sometimes termed Net Ecosystem Exchange (NEE). 
While precipitation exerts strong control on NPP 
(growth), temperature has a major control on Rh 

Figure 3   A time section of the predicted NPP (kg 
cm-2y-1) anomalies for two grid points, one over 
the Amazon and the other over south-western US, 
compared to the validation (black line; seasonal 
cycles removed). Each colored line represents one 
individual member of a 15-member ensemble 
forecast. Different colors represent forecasts made 
at different time. For clarity, the forecasts were 
‘thinned’ to show only every 6 months and for a 6-
month long forecast, while the actual forecasts 
were monthly and for 9 month lead.  
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(Schlesinger 1991; Zeng et al., 2005a). From 
the point of view of ecosystem prediction, 
NPP is most relevant. For the purpose of 
predicting atmospheric CO2, the net carbon 
flux Fta is most relevant. While results will 
be shown for NPP and Fta, other variables 
such as leaf biomass, fire carbon flux, Rh, 
soil carbon are all available.  

A ‘plume’ chart (Fig. 3) shows the 
hindcasted NPP at one grid point in the 
Amazon and another in southeastern US for 
a 3.5 year period during 1996-1999. When 
compared with the validation, the hindcast 

NPP captures the large changes associated 
with the 1997-98 El Nino. Each member of 
the ensemble forecast starts from a slightly 
different initial condition in the climate 
forecast while the initial vegetation state is 
same for each member as described above. 
The multiple ensemble members (plumes) 
clearly demonstrate the power of ensemble 

forecasting. For instance, some members from the 
September 1997 Amazon forecast over predict the 
decreased NPP, some others predict increased NPP, many 
others and the ensemble mean correctly predict decreased 
NPP. In the March 1998 forecast for southwestern US, the 
model predicts an initial increase followed by a decrease 
after 3 months, very similar to the validation, suggesting 
skill in transitional events with long-lead time. On the other 
hand, the transition after December 1998 was only captured 
by few ensemble members. 

 Figure 4 shows the global total land-atmosphere 
carbon flux from the hindcast compared to the validation. 
The hindcasts reproduce the major interannual variability, 
including two major El Nino events in 1982-83 and 1997-
98, although the amplitude is underestimated for 1997-98. 
A surprising yet good result is that the forecast deteriorates 
relatively slowly as a function of lead time L (L=1 month is 
the average of 1-month lead forecasts and so on), i.e., a 
forecast 9 months into future still carries significant amount 
of predictability compared to, for example, a 1 month lead 
forecast. This is partly due to the skill in the CFS predicted 
climate, and also importantly due to the memory in the 
hydro-ecosystem such as soil moisture which tends to filter 
out higher frequency noise. 

The upper panel of Fig.5 shows anomaly correlation 
between the hindcast and the validation land-atmosphere 
carbon flux Fta for three lead times L=1, 3, and 6 month. 
Many land regions have some skill, with correlation greater 
than 0.5 in many places in the first month. The area with 

Figure 4   Global total land-atmosphere carbon flux (PgCy-1) 
predicted by the hindcast experiment compared to the 
validation (solid black line). Each colored line represents 
the 15-member ensemble mean of the forecasts for a 
particular lead time (from 1 to 9 months), obtained by 
combining all the forecasts for that lead time. Seasonal 
cycle has been removed.  

Figure 5  Anomaly correlation of net land-
atmosphere carbon flux between validation 
and the forecasts for lead time of 1, 3, 6 
months.  
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high skill tends to be in the tropics, including the Amazon, Indonesia and Australia, but also mid-latitude regions 
such as southern Africa, the US west and southwest/central Asia. This is not surprising as these regions all have 
well established teleconnection with ENSO, the dominant interannual climate mode in precipitation and 
temperature (e.g., Ropelewski and Halpert, 1986).  

While the hindcast experiments discussed above demonstrate significant skill in seasonal prediction, it is 
important to establish benchmarks to which the dynamical prediction can be compared to. Two statistical 
methods are used here in the absence of information on future climate. The first is the persistence method in 
which the climate anomaly at the time of forecast is simply assumed to persist into future (Persistence). The 
second is a damping method in which the climate anomaly at the time of forecast is assumed to decrease at a 
rate defined by the de-correlation timescale of the variable (e.g., precipitation). An auto-correlation analysis 
using the observed precipitation and temperature was conducted with the seasonal cycle pre-removed (not 
shown), and the de-correlation timescale ranges from 3-7 months. Then climate anomalies for the ‘future’ were 
allowed to decrease exponentially from the current values to zero at the (spatially-varying) de-correlation 
timescale (Damping). An additional experiment 
was also conducted in which climate forcing 
anomalies were set to zero in the 9 month forecast, 
thus showing only the decay of the initial condition 
(Initial Condition) which reflects the cumulative 
effect of past anomalies. 

Figure 6 shows the anomaly correlation of 
tropical Fta. These two benchmark methods have 
similar skill that is comparable to the dynamical 
prediction at L=1 and 2, not surprisingly, their 
skills deteriorate faster than the dynamical 
prediction. At L=9, the anomaly correlation for the 
dynamical prediction is still over 0.6 while the two 
statistical benchmark methods have about 0.4. 
These are all statistically significant at 95% level. 
Another issue of interest is how much of the 
predictability comes from the memory in the eco-
carbon system (initial condition). If no information 
on climate anomaly is used, as in the case of initial 
condition only, the skill drops much more rapidly. 
While this is expected, an interesting finding is the 
memory effect in land and vegetation that 
nonetheless gives rise to a correlation of 0.4 at L=3 
and 0.2 at L=9.  

4. Conclusions 
Using a 25-year hindcast experiment, we demonstrate the feasibility of seasonal-interannual prediction of 

terrestrial ecosystem and the global carbon cycle variables. This has been achieved using a prototype forecasting 
system in which the dynamic vegetation and terrestrial carbon cycle model VEGAS was forced with the 15-
member ensemble climate prediction with lead time up to 9 month from the NCEP/CFS climate forecast system.  

The results show that the predictability is dominated by the ENSO signal for its major influence on the 
tropical and subtropical regions, but there is also important non-ENSO related predictability such as that 
associated with mid-latitude drought. The correlation between global total land-atmospheric carbon flux from 
the hindcast with that from a ‘validation’ experiment in which observed climate was used to drive the carbon 
model is higher than 0.42 at 3 month lead time. The correlation is higher at 0.79 for the tropical flux, while it is 
only 0.56 for the Northern Hemisphere extra-tropics. The anomaly correlation is higher than 0.3 for 25% of the 
land area at 3 month lead. Much of the predictability comes from regions with major ENSO teleconnection such 
as the Amazon, Indonesia, western US and central Asia.  

Figure 6   The correlation skill between the hindcast 
and the validation of tropically averaged land-
atmosphere carbon flux for four forecasting 
methods: Dynamical, Persistence, Damping, and 
Initial Condition only.  
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Compared to the CFS predicted precipitation and temperature where skill deteriorates rapidly at longer lead 
time, the hindcasted NPP and carbon flux show significantly slower decrease in skill, especially for the global or 
tropical total carbon flux, likely due to the memories in land and vegetation processes that filter out the higher 
frequency noise and sustain the signal. Comparison of the dynamical prediction results with benchmark 
statistical methods show that the dynamical method is significantly better than either anomaly persistence or 
damping of the current climate anomalies. Using initial condition only also leads to some predictability, 
consistent with the notion of a land-vegetation memory.  

We conclude that seasonal-interannual prediction of the ecosystem and carbon cycle is feasible. Such 
prediction will be useful for a suite of activities such as ecosystem management, agriculture and fire 
preparedness. The current system can be improved in several ways including: (1) Combination of statistical and 
dynamical methods. For instance, statistically correcting the systematic bias in the climate prediction; (2) The 
initialization used is simplistic and can be improved in the future with observed climate variable and in 
conjunction with carbon data assimilation; (3) Furthermore, improvement in model physics for both climate and 
terrestrial carbon cycle simulation and predictions are necessary. 

References 
Cane, M. A., G, Eshel, and R. W. Buckland, 1994:  Forecasting Zimbabwean maize yield using eastern 

equatorial Pacific sea surface temperature. Nature, 370 (6486), 204-205.  
Hansen, J. W., and Indeje, M., 2004:  Linking dynamic seasonal climate forecasts with crop simulation for 

maize yield prediction in semi-arid Kenya.  Agri. Forest. Meteor., 125 (1-2), 143-157.  
Jones, C. D., M. Collins, P. M. Cox, S. A. Spall, 2001:  The carbon cycle response to ENSO: A coupled climate-

carbon cycle model study.  J. of Clim., 14, 4113-4129.  
Keeling, C. D., T. P. Whorf, M. Wahlen, J. Vanderplicht, 1995:  Interannual Extremes in the rate of rise of 

atmospheric carbon dioxide since 1980. Nature, 375, 666-670.  
Mitchell, T. D.,and P. D. Jones, 2005:  An improved method of constructing a data base of monthly climate 

observations and associated high-resolution grids. Intern.  J. Climatology, 25 (6), 693-712.  
Palmer, T., N., A. Alessandri, U. Andersen, and others, 2004:Development of a European multi-model ensemble 

system for seasonal to inter-annual prediction (DEMETER).  Bull. Amer. Meteor. Soc., 85 (6), 853-872.  
Rayner, P. J., M. Scholze, W. Knorr, et al., 2005:  Two decades of terrestrial carbon fluxes from a carbon cycle 

data assimilation system (CCDAS).  Glob. Bigeochem. Cyc., 19 (2), GB2026.  
Rodenbeck, C., S. Houweling, M. Gloor, and M. Heimann, 2003: CO2 flux history 1982-2001 inferred from 

atmospheric data using a global inversion of atmospheric transport.  Atmos. Chem. Phys., 3, 1919-1964.  
Ropelewski, C. F., and M. S. Halpert, 1987:  Global and regional scale precipitation associated with El 

Nino/Southern Oscillation.  Mon. Wea. Rev., 115, 1606–1626.  
Saha, S., S. Nadiga, C. Thiaw, and others, 2006:  The NCEP Climate Forecast System. J. Climate, 19 (15), 

3483-3517.  
Schlesinger, W. H., 1991:  Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, 

USA, 443pp.  
Turk, D, McPhaden, M J; Busalacchi, A J; Lewis, M R., 2001:  Remotely sensed biological production in the 

equatorial Pacific. Science, 293, 471-474.  
Zeng, N., 2003:  Glacial-Interglacial Atmospheric CO2 Changes–The Glacial Burial Hypothesis. Adv. Atmos. 

Sci., 20, 677-693.  
Zeng, N., A. Mariotti, and P. Wetzel, 2005a: Terrestrial mechanisms of interannual CO2 variability, Global 

Biogeochem. Cycle, 19, GB1016, doi:10.1029/2004GB002273.  
Zeng, N., H. Qian, C. Rodenbeck, and M. Heimann, 2005b:  Impact of 1998-2002 midlatitude drought and 

warming on terrestrial ecosystem and the global carbon cycle. Geophys. Res. Lett., 32, L22709, 
doi:10.1029/2005GL024 


